
CS 302: INTRODUCTION TO PROGRAMMING IN JAVA

 Lecture 10

Chapter 5: Methods

1

PROBLEM

● What if I was using a lot of different arrays and

often wanted to print out their contents?

● I would have to have that same for loop

every time I wanted to print out the array

contents

● Solution: Use Methods!

2

METHODS

● A method is a named sequence of

instructions

● We have already seen many methods

● main

● Math.pow()

● in.next()

● System.out.println()

● etc.

Method Man loves
methods

3

METHOD CALLING CONVENTIONS

● [identifier].[methodName]([arguments])

● System.out.println("Hello");

● Math.pow(2, 4);

● System.out.println(x);

● Multiple arguments always seperated by commas (,)

● Identifiers can be class or variable names

● Variable Names – if calling on a reference variable
(like Strings)

● Class Names – if calling a static method

4

METHOD BASICS

● Basic Idea – break code down into simple
building blocks

● Black Box – when using methods other people
have written, we don't need to know how they
work

● TV example

● Math.pow

● Methods take in input (arguments) and give
back output (return values)

5

CALLING METHODS

● Arguments = input

● Can have 0 or many arguments

● Go inside the parenthesis

● Ex.: Math.pow(2, 4) or rand.nextInt()

● Defined by method parameters

● Return Value

● Can only have 0 or 1 return value

● Ex. Math.pow can only return 1 value, to do
additional powers must call Math.pow multiple
times with different parameters

● Specified by the "return" keyword

6

LUNCH EXAMPLE

class Lunch

{

 main

 {

 sandwich = makeSandwich(bread, peanutButter, jelly);

 drink = pourDrink(cup, water);

 turnOnTV();

 eatLunch(sandwhich, drink);

 }

}

7

MATH.POW

/**

 Computes a base raised to a positive power

 @param base the base

 @param power the power to raise the base to, must be >= 0

 @return base^power, or 1 if base < 0

*/

public static double pow(double base, double power) {

 double sum = 1;

 for (int i = 1; i <= power; i++) {

 sum *= base;

 }

 return sum;

}
8

IMPLEMENTING METHODS

● Methods go outside the main method but inside the class

definition

● Methods have:

● Method Header

– public static modifiers like the main method (these will

be explained eventually)

– Return type

– Name – camelCase convention like variables

– Type and name for each parameter variable

● Method Body (code to execute)

● Lets make our own Math.pow method header:

public static double myPow(double base, double exponent)

9

METHOD BODY

● The body of the method is defined by braces

and that is the code that will execute when the

method is called

public static double myPow(double base, double exponent)

{

 //method body

 //must return a double at the end of the method

}

10

METHOD COMMENTS

● Use javadoc comments /**...*/ above the method

header

/**

 Computes a base raised to a positive power

 @param base the base

 @param power the power to raise the base to, must be >= 0

 @return base^power, or 1 if base < 0

*/

public static double myPow(double base, double exponent)

11

COMMON ERRORS

public static int myDivide(a, b)

{

 return a/b;

}

public static myMultiply(int a, int

b)

{

 return a*b;

}

● Forgot the parameter

variable types

● Forgot the method return

type

12

COMMON ERRORS

public static int rectArea(double length, double width)

{

 return length*width;

}

Return type doesn't match what the method body returns

13

PRACTICE 1

● Write a method to compute the area of a cube

or a rectangular block

● Input: (validate input type)

● Height

● Width

● Depth

● Output:

● Volume = height * width * depth

14

WHY DO WE USE METHODS?

● Increase modularity

● Increase readability / maintainability

● Reduce redundancy

● Ex. P1:

● Multiple Validation loops -> a single

validation method

● Multiple modes -> multiple methods (better

style, easier debugging, etc.)

15

CALLING METHODS

Is
method
static?

Yes No

ClassName.methodName(arguments)

ex. Math.pow(2, 4);

objectName.method(arguments)

ex. in.nextLine() or rand.nextInt(10)

●For now, we will only create static methods

●If calling static methods that are defined within the same class that they
are being called from, the ClassName. identifier can be dropped from the
method call (just call the method using its name)

16

ARGUMENTS VS PARAMETERS

● Arguments (book calls them "parameter values")
get passed to the method

● Parameters (book calls them "parameter
variables") are defined in the method header

● Arguments must match the parameter definitions
in type, order, and number

● Do not need to have the same name

● Argument values get COPIED into the parameter
variables

● Changing the parameter does NOT change the
original argument

17

ARGS VS PARAMETERS EXAMPLE

int a = 4, b = 5;

int area = rectArea(a, b);

...

public static int rectArea(int width, int height)

{

...

}

Blue = arguments
Red = parameters

Arguments must match parameters in number, order,
and type

●a's value is copied to width
●b's value is copied to height
 18

WHAT IS THE VALUE OF X?

int x = 4;

double y = doSomething(x);

...

public static double doSomething(int z)

{

 for (int i = 0; i < 3; i++)

 z = z + i;

 return z;

}

19

VARIABLE SCOPE

● Just like what we talked about in ifs and loops

● A variable declared within braces is ONLY valid within

those braces

● That means you can't use variables defined in a method

outside of that method!!!

● Can use the same variable name in different scopes

Ex.

public static double rectArea(int length, int width)

public static double cubeVolumn(int lenght, int width, int depth)

20

RETURN STATEMENT

● Immediatly exits the method

● Can return

● Literal – return 4;

● Variable – return x;

● Result of an expression – return (x && y || (3+z < 5));

● Result of another method call – return
doSomething(x);

● Return type must match the type in the method header

● If the method returns nothing, it is of type void

21

VOID METHODS
● Ex. public static void

main(String[] args)

● Used when the method

doesn't return anything

● Often used for displaying

things

● Can still use the return

statement to exit the

method immediatly

● In this case the

statement is simply:

return;

printStars(3, 4);

...

public static void printStars(int
width, int height)

{

 for (int i = 0; i < width; i++)

 for (int j = 0; j < width; j ++)

 print("*");

 print("\n");

}

22

RETURN VS. BREAK

for (int i = 0; i < 10; i++)

{

 if (i == 5) break;

}

Vs

for (int i = 0; i < 10; i++)

{

 if (i == 5) return;

}

● Break simply breaks
out of the current loop

● What would happen
in a nested loop?

● Return immediatly
exits the method and
returns the return
value (if any)

● What would happen
in a nested loop?

23

RETURN WITHIN CONDITIONALS

public static String getDay(int day)

{

 if (day == 1) return "Sunday";

 if (day == 2) return "Monday";

 if (day == 3) return "Tuesday";

 ...

}

● Note we don't need else ifs because the return statement

exits the method immediately!

● If we do branch every possible traversal must have a

return statement!

24

Practice 2 (take home)
• Remember we had a practice (refer to HopeAndChange.java on

the course website under “In-Class Example Code” tab)

• Let’s do the same thing but now we use a static method to

calculate change given coin value (25 for quarter, 10 for dime, 5

for nickel, 1 for penny), coin name (“quarter”, “dime”, “nickel”,

“penny”), change (centsLeft defined previously). So the

parameter values for this method should be coinValue,

coinName, centsLeft with appropriate data types, respectively.

• The method should be able to print out number of coins

(quarters, dimes, nickels or pence) AND return the remainder

(centsLeft).

• In the main method, call the method for the number of quarters,

dimes, nickels, pennies.

25

